Journal of Physical Chemistry B, Vol.116, No.24, 7190-7195, 2012
Supported Lipid Monolayer with Improved Nanomechanical Stability: Effect of Polymerization
We study the effect of polymerization on the nanomechanical stability of supported lipid monolayers consisting of 1,2-di-(10Z,12Z-tricosadiynoyl)-sn-glycero-3-phosphocholine by means of force mapping using an atomic force microscope. For both nonpolymerized and polymerized lipid monolayers, we investigate the break-through forces required to rupture the monolayers for a whole range of loading velocities. We show that the average break-through force exerted by the tip and required to penetrate the monolayer has a logarithmic dependence on the loading rate. Both Young moduli and intrinsic Gibbs energies have been determined for the nonpolymerized and polymerized lipid monolayers, and we show a drastic effect of polymerization on the nanomechanical stability of the monolayer with an increase by a factor of similar to 100 for the young modulus and similar to 3 for the intrinsic Gibbs activation energy.