Macromolecular Research, Vol.20, No.9, 920-927, September, 2012
Structures, Electrical, and Dielectric Properties of PVDF-Based Nanocomposite Films Reinforced with Neat Multi-Walled Carbon Nanotube
E-mail:
We report, herein, on the structures, melting/crystallization, electrical, and dielectric properties of poly (vinylidene fluoride) (PVDF) nanocomposites reinforced with a neat multiwalled carbon nanotube (MWCNT). For our purposes, PVDF/MWCNT nanocomposite films with a wide range of MWCNT contents (0.0-20.0 wt%) are prepared via ultrasonicated solution-mixing and melt-compression methods. It is found that MWCNTs become well dispersed in nanocomposites by wrapping them with PVDF chains. The relative content of β-phase to α-phase crystals of a PVDF matrix is higher for the nanocomposite films with higher MWCNT content; although, the overall
crystallinity of the nanocomposites is almost identical, irrespective of the MWCNT content. The electrical conductivity and dielectric permittivity of the nanocomposites as a function of frequency are strongly dependent on the MWCNT content. The electrical percolation threshold of PVDF/MWCNT nanocomposites is formed between 2.0 and 5.0 wt% MWCNT. The neat PVDF and nanocomposites with low MWCNT contents of 0.2 and 1.0 wt% are electrically insulating materials (~10^(-9) S/cm at 102 Hz) with low dielectric permittivity of 9-28; while the nanocomposites with high MWCNT contents of 5.0-20.0 wt% have relatively high electrical conductivity values (10^(-4)~10^(-2) S/cm at 102 Hz). In contrast, the nanocomposite with 2.0 wt% MWCNT has a huge dielectric permittivity of ~6520 at 102 Hz, although it has relatively low electrical conductivity of ~10^(-8) S/cm at 102 Hz. The huge dielectric permittivity of the nanocomposite with 2.0 wt% MWCNT could be caused by charge accumulation at the interfacial layers between PVDF chains and MWCNTs in the vicinity of the electrical percolation threshold.
Keywords:poly(vinylidene fluoride);multi-walled carbon nanotube;nanocomposite;dielectric property;electrical property.
- Kawai H, Jpn. J. Appl. Phys., 8, 975 (1969)
- Lovinger AJ, Science., 220, 1115 (1983)
- Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang QM, Science., 313, 334 (2006)
- Shankar R, Ghosh TK, Spontak RJ, Soft Matter., 3, 1116 (2007)
- Schnorr JM, Swager TM, Chem. Mater., 23, 646 (2011)
- Zhang QM, Li H, Poh M, Xia F, Cheng ZY, Xu H, Huang C, Nature., 419, 284 (2002)
- Dang ZM, Wang L, Wang HY, Nan CW, Xie D, Yin Y, Tjong SC, Appl. Phys. Lett., 86, 172905 (2005)
- Dang ZM, Wang L, Yin Y, Zhang Q, Lei QQ, Adv. Mater., 19(6), 852 (2007)
- Li Q, Xue Q, Zheng Q, Hao L, Gao X, Mater. Lett., 62, 4229 (2008)
- Coleman JN, Khan U, Gun'ko YK, Adv. Mater., 18(6), 689 (2006)
- Moniruzzaman M, Winey KI, Macromolecules, 39(16), 5194 (2006)
- Byrne MT, Gun'ko YK, Adv. Mater., 22(15), 1672 (2010)
- Xie XL, Mai YW, Zhou XP, Mater. Sci. Eng. R., 49, 89 (2005)
- Li C, Thostenson ET, Chou TW, Compos. Sci. Technol., 68, 1227 (2008)
- Lee CU, Dadmun MD, J. Polym. Sci. B: Polym. Phys., 46(16), 1747 (2008)
- Yoon JT, Lee SC, Jeong YG, Compos. Sci. Technol., 70, 776 (2010)
- El-Hami K, Matsushige K, Chem. Phys. Lett., 368(1-2), 168 (2003)
- Levi N, Czerw R, Xing S, Lyer P, Caroll D, Nano Lett., 4, 1267 (2004)
- Owens FJ, Jayakody JRP, Greenbaum SG, Compos.Sci. Technol., 66, 1280 (2006)
- Yu X, Rajamani R, Stelson KA, Cui T, Sens. Actuators A: Phys., 132, 626 (2006)
- Xu Y, Ray G, Abdel-Magid B, Compos. Part A: Appl.Sci. Manuf., 37, 114 (2006)
- Wang L, Dang ZM, Appl. Phys. Lett., 87, 042903 (2005)
- Manna S, Nandi AK, J. Phys. Chem. C., 111, 14670 (2007)
- Dang ZM, Appl. Phys. Lett., 90, 012907 (2007)
- Kim GH, Lee JS, Koo CM, Hong SM, Compos. Interfaces, 16(4-6), 507 (2009)
- Jin ZX, Pramoda KP, Goh SH, Xu GQ, Mater. Res. Bull., 37(2), 271 (2002)
- Davies GR, Institute of Physics Conference Series, Goodman C, Ed., The Institute of Physics, Bristol, 58 (1980)
- Yu SS, Zheng WT, Yu WX, Zhang YJ, Jiang Q, Zhao ZD, Macromolecules, 42(22), 8870 (2009)
- Song D, Yang D, Feng Z, J. Mater. Sci., 25, 57 (1990)
- Lee JG, Kim SH, Macromol. Res., 19(1), 72 (2011)
- Schneider S, Drujon X, Wittmann JC, Lotz B, Polymer, 42(21), 8799 (2001)
- Li C, Thostenson ET, Chou TW, Appl. Phys. Lett., 91, 223114 (2007)
- Tamura R, Lim E, Manaka T, Iwamoto M, J. Appl. Phys., 100, 114515 (2006)