화학공학소재연구정보센터
Macromolecular Research, Vol.20, No.9, 920-927, September, 2012
Structures, Electrical, and Dielectric Properties of PVDF-Based Nanocomposite Films Reinforced with Neat Multi-Walled Carbon Nanotube
E-mail:
We report, herein, on the structures, melting/crystallization, electrical, and dielectric properties of poly (vinylidene fluoride) (PVDF) nanocomposites reinforced with a neat multiwalled carbon nanotube (MWCNT). For our purposes, PVDF/MWCNT nanocomposite films with a wide range of MWCNT contents (0.0-20.0 wt%) are prepared via ultrasonicated solution-mixing and melt-compression methods. It is found that MWCNTs become well dispersed in nanocomposites by wrapping them with PVDF chains. The relative content of β-phase to α-phase crystals of a PVDF matrix is higher for the nanocomposite films with higher MWCNT content; although, the overall crystallinity of the nanocomposites is almost identical, irrespective of the MWCNT content. The electrical conductivity and dielectric permittivity of the nanocomposites as a function of frequency are strongly dependent on the MWCNT content. The electrical percolation threshold of PVDF/MWCNT nanocomposites is formed between 2.0 and 5.0 wt% MWCNT. The neat PVDF and nanocomposites with low MWCNT contents of 0.2 and 1.0 wt% are electrically insulating materials (~10^(-9) S/cm at 102 Hz) with low dielectric permittivity of 9-28; while the nanocomposites with high MWCNT contents of 5.0-20.0 wt% have relatively high electrical conductivity values (10^(-4)~10^(-2) S/cm at 102 Hz). In contrast, the nanocomposite with 2.0 wt% MWCNT has a huge dielectric permittivity of ~6520 at 102 Hz, although it has relatively low electrical conductivity of ~10^(-8) S/cm at 102 Hz. The huge dielectric permittivity of the nanocomposite with 2.0 wt% MWCNT could be caused by charge accumulation at the interfacial layers between PVDF chains and MWCNTs in the vicinity of the electrical percolation threshold.
  1. Kawai H, Jpn. J. Appl. Phys., 8, 975 (1969)
  2. Lovinger AJ, Science., 220, 1115 (1983)
  3. Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang QM, Science., 313, 334 (2006)
  4. Shankar R, Ghosh TK, Spontak RJ, Soft Matter., 3, 1116 (2007)
  5. Schnorr JM, Swager TM, Chem. Mater., 23, 646 (2011)
  6. Zhang QM, Li H, Poh M, Xia F, Cheng ZY, Xu H, Huang C, Nature., 419, 284 (2002)
  7. Dang ZM, Wang L, Wang HY, Nan CW, Xie D, Yin Y, Tjong SC, Appl. Phys. Lett., 86, 172905 (2005)
  8. Dang ZM, Wang L, Yin Y, Zhang Q, Lei QQ, Adv. Mater., 19(6), 852 (2007)
  9. Li Q, Xue Q, Zheng Q, Hao L, Gao X, Mater. Lett., 62, 4229 (2008)
  10. Coleman JN, Khan U, Gun'ko YK, Adv. Mater., 18(6), 689 (2006)
  11. Moniruzzaman M, Winey KI, Macromolecules, 39(16), 5194 (2006)
  12. Byrne MT, Gun'ko YK, Adv. Mater., 22(15), 1672 (2010)
  13. Xie XL, Mai YW, Zhou XP, Mater. Sci. Eng. R., 49, 89 (2005)
  14. Li C, Thostenson ET, Chou TW, Compos. Sci. Technol., 68, 1227 (2008)
  15. Lee CU, Dadmun MD, J. Polym. Sci. B: Polym. Phys., 46(16), 1747 (2008)
  16. Yoon JT, Lee SC, Jeong YG, Compos. Sci. Technol., 70, 776 (2010)
  17. El-Hami K, Matsushige K, Chem. Phys. Lett., 368(1-2), 168 (2003)
  18. Levi N, Czerw R, Xing S, Lyer P, Caroll D, Nano Lett., 4, 1267 (2004)
  19. Owens FJ, Jayakody JRP, Greenbaum SG, Compos.Sci. Technol., 66, 1280 (2006)
  20. Yu X, Rajamani R, Stelson KA, Cui T, Sens. Actuators A: Phys., 132, 626 (2006)
  21. Xu Y, Ray G, Abdel-Magid B, Compos. Part A: Appl.Sci. Manuf., 37, 114 (2006)
  22. Wang L, Dang ZM, Appl. Phys. Lett., 87, 042903 (2005)
  23. Manna S, Nandi AK, J. Phys. Chem. C., 111, 14670 (2007)
  24. Dang ZM, Appl. Phys. Lett., 90, 012907 (2007)
  25. Kim GH, Lee JS, Koo CM, Hong SM, Compos. Interfaces, 16(4-6), 507 (2009)
  26. Jin ZX, Pramoda KP, Goh SH, Xu GQ, Mater. Res. Bull., 37(2), 271 (2002)
  27. Davies GR, Institute of Physics Conference Series, Goodman C, Ed., The Institute of Physics, Bristol, 58 (1980)
  28. Yu SS, Zheng WT, Yu WX, Zhang YJ, Jiang Q, Zhao ZD, Macromolecules, 42(22), 8870 (2009)
  29. Song D, Yang D, Feng Z, J. Mater. Sci., 25, 57 (1990)
  30. Lee JG, Kim SH, Macromol. Res., 19(1), 72 (2011)
  31. Schneider S, Drujon X, Wittmann JC, Lotz B, Polymer, 42(21), 8799 (2001)
  32. Li C, Thostenson ET, Chou TW, Appl. Phys. Lett., 91, 223114 (2007)
  33. Tamura R, Lim E, Manaka T, Iwamoto M, J. Appl. Phys., 100, 114515 (2006)