화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.133, No.22, 8458-8460, 2011
Highly Efficient CdS Quantum Dot-Sensitized Solar Cells Based on a Modified Polysulfide Electrolyte
A modified polysulfide redox couple, [(CH(3))(4)N](2)S/[(CH(3))(4)N](2)S(n), in an organic solvent (3-methoxypropionitrile) was employed in CdS quantum dot (QD)-sensitized solar cells (QDSSCs), and an unprecedented energy conversion efficiency of up to 3.2% was obtained under AM 1.5 G illumination. The QDs were linked to nanoporous TiO(2) via covalent bonds by using thioglycolic acid, and chemical bath deposition in an organic solvent was then used to prepare the QDSSCs, facilitating high wettability and superior penetration capability of the TiO(2) films. A very high fill factor of 0.89 was observed with the optimized QDSSCs.