화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.133, No.29, 11088-11091, 2011
Bioluminescence Is Produced from a Trapped Firefly Luciferase Conformation Predicted by the Domain Alternation Mechanism
According to the domain alternation mechanism and crystal structure evidence, the acyl-CoA synthetases, one of three subgroups of a superfamily of adenylating enzymes, catalyze adenylate- and thioester-forming half-reactions in two different conformations. The enzymes accomplish this by presenting two active sites through an similar to 140 degrees rotation of the C-domain. The second half-reaction catalyzed by another subgroup, the beetle luciferases, is a mechanistically dissimilar oxidative process that produces bioluminescence. We have demonstrated that a firefly luciferase variant containing cysteine residues at positions 108 and 447 can be intramolecularly cross-linked by 1,2-bis(maleimido)ethane, trapping the enzyme in a C-domain-rotated conformation previously undocumented in the available luciferase crystal structures. The cross-linked luciferase cannot adenylate luciferin but is nearly fully capable of bioluminescence with synthetic luciferyl adenylate because it retains the ability to carry out the oxidative half-reaction. The cross-linked luciferase is apparently trapped in a conformation similar to those adopted by acyl-CoA synthetases as they convert acyl adenylates into the corresponding CoA thioesters.