화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.133, No.30, 11524-11533, 2011
Evolution of Packing Parameters in the Structural Changes of Silica Mesoporous Crystals: Cage-Type, 2D Cylindrical, Bicontinuous Diamond and Gyroid, and Lamellar
Cage-type, two-dimensional (2D) cylindrical hexagonal (C), bicontinuous diamond (D), bicontinuous gyroid (G), and one-dimensional (1D) lamellar (L) structures of silica mesoporous crystals (SMCs) were obtained by using the anionic surfactant N-stearoyl-L-glutamic acid (C(18)GluA) as a template in the presence of the nonionic surfactant C(16)(EO)(10) (Brij-56). The mesostructures were controlled by the organic/inorganic interface curvature change induced by Brij-56. A synthesis-field diagram showed that the mesostructure changed in the sequence cage-type -> C -> intergrowth of C and D -> intergrowth of C and G -> D -> G -> L with increase of the amount of Brij-56. Mixed micelles were formed by the anionic and nonionic surfactants, the packing parameter g of which increased with increasing the addition amount of nonionic surfactant and the reaction temperature. The local g parameter was obtained from electron crystallography reconstruction results by calculating mean curvatures and Gaussian curvatures from the equi-electrostatic potential surface. The intergrowth of C and D and two kinds of intergrowth of C and G are also discussed.