Journal of the American Chemical Society, Vol.133, No.33, 12960-12963, 2011
beta-Galactosidase Fluorescence Probe with Improved Cellular Accumulation Based on a Spirocyclized Rhodol Scaffold
We identified a rhodol bearing a hydroxymethyl group (HMDER) as a suitable scaffold for designing fluorescence probes for various hydrolases. HMDER shows strong fluorescence at physiological pH, but phenolic O-alkylation of HMDER results in a strong preference for the spirocyclic form, which has weak fluorescence. As a proof of concept, we utilized this finding to develop a new fluorescence probe for beta-galactosidase. This probe has favorable characteristics for imaging in biological samples: it has good cellular permeability, and its hydrolysis product is well-retained intracellularly. It could rapidly and clearly visualize beta-galactosidase activity in cultured cells and in Drosophila melanogaster tissue, which has rarely been achieved with previously reported fluorescence probes.