화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.133, No.34, 13292-13295, 2011
Benchtop Electrochemical Liquid-Liquid-Solid Growth of Nanostructured Crystalline Germanium
An electrochemical liquid liquid solid (ec-LLS) process that produces large amounts of crystalline semiconductors with tunable nanostructured shapes without any physical or chemical templating agent is presented. Electrodeposition of Ge from GeO(2)(aq) solutions followed by dissolution into a liquid Hg electrode, saturation of the liquid alloy, and precipitation can yield polycrystalline Ge(s) under ambient conditions. A unique advantage of ec-LLS is that it involves precipitation under electrochemical control, where the applied bias precisely defines the flux of Ge into the liquid electrode. Fidelity of the saturation and precipitation of Ge from liquid electrodes affords a variety of material morphologies, including dense films of oriented nanostructured filaments with large aspect ratios (>10(3)). Electrodeposition involving a liquid electrolyte, a liquid electrode, and a solid deposit under ambient conditions represents a conceptually unexplored direct wet-chemical route for the preparation of bulk quantities of crystalline group-IV semiconductors without the time- and energy-intensive processing steps required in traditional preparations of semiconductor materials.