화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.133, No.34, 13534-13538, 2011
The Effect of H-2 Partial Pressure on the Reaction Progression and Reversibility of Lithium-Containing Multicomponent Destabilized Hydrogen Storage Systems
It is known that the reaction path for the decomposition of LiBH4:MgH2 systems is dependent on whether decomposition is performed under vacuum or under a hydrogen pressure (typically 1-5 bar). However, the sensitivity of this multicomponent hydride system to partial pressures of H-2 has not been investigated previously. A combination of in situ powder neutron and X-ray diffraction (deuterides were used for the neutron experiments) have shed light on the effect of low partial pressures of hydrogen on the decomposition of these materials. Different partial pressures have been achieved through the use of different vacuum systems. It was found that all the samples decomposed to form Li-Mg alloys regardless of the vacuum system used or sample stoichiometry of the multicomponent system. However, upon cooling the reaction products, the alloys showed phase instability in all but the highest efficiency pumps (i.e., lowest base pressures), with the alloys reacting to form LiH and Mg. This work has significant impact on the investigation of Li-containing multicomponent systems and the reproducibility of results if different dynamic vacuum conditions are used, as this affects the apparent amount of hydrogen evolved (as determined by ex situ experiments). These results have also helped to explain differences in the reported reversibility of the systems, with Li-rich samples forming a passivating hydride layer, hindering further hydrogenation.