화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.133, No.35, 14082-14089, 2011
Expanded Substrate Scope and Improved Reactivity of Ether-Forming Cross-Coupling Reactions of Organotrifluoroborates and Acetals
Mixed acetals and organotrifluoroborates undergo BF3 center dot OEt2-promoted cross-couplings to give dialkyl ethers under simple, mild conditions. A survey of reaction partners identified a hydroxamate leaving group that improves the regioselectivity and product yield in the BF3 center dot OEt2-promoted coupling reaction of mixed acetals and potassium alkynyl-, alkenyl-, aryl- and heteroaryltrifluoroborates to access substituted dialkyl ethers. This leaving group enables the reaction to proceed rapidly under mild conditions (0 degrees C, 5-60 min) and permits reactions with electron-deficient potassium aryltrifluoroborates that are less reactive with other acetal substrates. A study of the reaction mechanism and characterization of key intermediates by NMR spectroscopy and X-ray crystallography identified a role for the hydroxamate moiety as a reversible leaving group that serves to stabilize the key oxocarbenium intermediate and the need for a slight excess of organodifluoroborane to serve as a catalyst. A secondary role for the boron nucleophile as an activating ligand was also considered. These studies provide the basis for a general class of reagents that lead to dialkyl ethers by a simple, predictable cross-coupling reaction.