화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.133, No.42, 16714-16717, 2011
Structural and Electronic Characterization of Non-Heme Fe(II)-Nitrosyls as Biomimetic Models of the Fe-B Center of Bacterial Nitric Oxide Reductase
The detoxification of nitric oxide (NO) by bacterial NO reductase (NorBC) has gained much attention as this reaction provides a paradigm as to how NO can be detoxified anaerobically in cells. However, a dear mechanistic picture of how the heme/non-heme active site of NorBC activates NO is lacking, mostly as a result of insufficient knowledge about the properties of the non-heme iron(II)-NO adduct. Here we report the first biomimetic model complexes for this species that closely resemble the coordination environment found in the protein, using the ligands BMPA-Pr and TPA. The systematic investigation of these compounds allowed us to gain key insight into the electronic structure and geometric properties of high-spin non-heme iron(II)-NO adducts. In particular, we show how small changes in the ligand environment of iron could be used by NorBC to greatly modulate the properties, and hence, the reactivity of this species.