화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.133, No.48, 19346-19349, 2011
Reengineering a Tryptophan Halogenase To Preferentially Chlorinate a Direct Alkaloid Precursor
Installing halogens onto natural products can generate compounds with novel or improved properties. Notably, enzymatic halogenation is now possible as a result of the discovery of several classes of halogenases; however, applications are limited because of the narrow substrate specificity of these enzymes. Here we demonstrate that the flavin-dependent halogenase RebH can be engineered to install chlorine preferentially onto tryptamine rather than the native substrate tryptophan. Tryptamine is a direct precursor to many alkaloid natural products, including approximately 3000 monoterpene indole alkaloids. To validate the function of this engineered enzyme in vivo, we transformed the tryptamine-specific RebH mutant (Y455W) into the alkaloid-producing plant Madagascar periwinkle (Catharanthus roseus) and observed the de novo production of the halogenated alkaloid 12-chloro-19, 20-dihydroakuammicine. While wild-type (WT) RebH has been integrated into periwinkle metabolism previously, the resulting tissue cultures accumulated substantial levels of 7-chlorotryptophan. Tryptophan decarboxylase, the enzyme that converts tryptophan to tryptamine, accepts 7-chlorotryptophan at only 3% of the efficiency of the native substrate tryptophan, thereby creating a bottleneck. The RebH Y45SW mutant circumvents this bottleneck by installing chlorine onto tryptamine, a downstream substrate. In comparison with cultures harboring RebH and WT RebF, tissue cultures containing mutant RebH Y455W and RebF also accumulate microgram per gram fresh-weight quantities of 12-chloro-19,20-dihydroakuarnmicine but, in contrast, do not accumulate 7-chlorotryptophan, demonstrating the selectivity and potential utility of this mutant in metabolic engineering applications.