Journal of the American Chemical Society, Vol.133, No.48, 19393-19398, 2011
Probing pH-Dependent Dissociation of HdeA Dimers
HdeA protein is a small, ATP-independent, acid stress chaperone that undergoes a dimer-to-monomer transition in acidic environments. The HdeA monomer binds a broad range of proteins to prevent their acid-induced aggregation. To understand better HdeA's function and mechanism, we perform constant-pH molecular dynamics simulations (CPHMD) to elucidate the details of the HdeA dimer dissociation process. First the pK(a) values of all the acidic titratable groups in HdeA are obtained and reveal a large pK(a) shift only for Glu(37). However, the pH-dependent monomer charge exhibits a large shift from -4 at pH > 6 to +6 at pH = 2.5, suggesting that the dramatic change in charge on each monomer may drive dissociation. By combining the CPHMD approach with umbrella sampling, we demonstrate a significant stability decrease of the HdeA dimer when the environmental pH changes from 4.0 to 3.5 and identify the key acidic residue lysine interactions responsible for the observed pH sensing in HdeA chaperon activity function.