화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.133, No.51, 20769-20777, 2011
-NH- Termination of the Si(111) Surface by Wet Chemistry
For over a quarter of a century the hydrogen-terminated Si(111) single-crystalline surface has been the gold standard as a starting point for silicon surface modification chemistry. However, creating a well-defined and stable interface based on Si-N bonds has remained elusive. Despite the fact that azides, nitro compounds, and amines do lead to the formation of surface Si-N, each of these modification schemes produces additional carbon- or oxygen-containing functional groups that in turn react with the surface itself, leaving contaminants that affect the interface properties for any further modification protocols. We describe the preparation of a Si(111) surface functionalized predominantly with Si-NH-Si species based on chlorination followed by the room temperature ammonia treatment utilizing NH(3)-saturated tetrahydrofuran (THF). The obtained surface has been characterized by infrared spectroscopy and X-ray photoelectron spectroscopy. This analysis was supplemented with DFT calculations. This newly characterized surface will join the previously established H-Si(111) and Cl-Si(111) surfaces as a general starting point for the preparation of oxygen- and carbon-free interfaces, with numerous potential applications.