Journal of the American Chemical Society, Vol.134, No.11, 5211-5221, 2012
Rhodium-Catalyzed Intra- and Intermolecular [5+2] Cycloaddition of 3-Acyloxy-1,4-enyne and Alkyne with Concomitant 1,2-Acyloxy Migration
A new type of rhodium-catalyzed [5 + 2] cycloaddition was developed for the synthesis of seven-membered rings with diverse functionalities. The ring formation was accompanied by a 1,2-acyloxy migration event. The five- and two-carbon components of the cycloaddition are 3-acyloxy-1,4-enynes (ACEs) and alkynes, respectively. Cationic rhodium(I) catalysts worked most efficiently for the intramolecular cycloaddition, while only neutral rhodium(I) complexes could facilitate the intermolecular reaction. In both cases, electron-poor phosphite or phosphine ligands often improved the efficiency of the cycloadditions. The scope of ACEs and alkynes was investigated in both the intra- and intermolecular reactions. The resulting seven-membered-ring products have three double bonds that could be selectively functionalized.