Journal of the American Chemical Society, Vol.134, No.18, 7773-7779, 2012
Phosphatidylserine Reversibly Binds Cu2+ with Extremely High Affinity
Phosphatidylserine (PS) embedded within supported lipid bilayers was found to bind Cu2+ from solution with extraordinarily high affinity. In fact, the equilibrium dissociation constant was in the femtomolar range. The resulting complex formed in a 1:2 Cu2+-to-PS ratio and quenches a broad spectrum of lipid-bound fluorophores in a reversible and pH-dependent fashion. At acidic pH values, the fluorophores were almost completely unquenched, while at basic pH values significant quenching (85-90%) was observed. The pH at which the transition occurred was dependent on the PS concentration and ranged from approximately pH 5 to 8. The quenching kinetics was slow at low Cu2+ concentrations and basic pH values (up to several hours), while the unquenching reaction was orders of magnitude more rapid upon lowering the pH. This was consistent with diffusion-limited complex formation at basic pH but rapid dissociation under acidic conditions. The tight binding of Cu2+ to PS may have physiological consequences under certain circumstances.