화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.134, No.19, 8090-8093, 2012
Histone-Catalyzed Cleavage of Nucleosomal DNA Containing 2-Deoxyribonolactone
Oxidized abasic sites such as 2-deoxyribonolactone (L) are produced in DNA by a variety of oxidizing agents, including potent cytotoxic antitumor natural products. 2-Deoxyribonolactone is labile under alkaline conditions, but its half-life in free DNA at pH 7.5 is approximately 1 week. Independent generation of L at defined positions within nucleosomes reveals that the histone proteins catalyze strand scission and increase the rate between 11- and similar to 43-fold. Mechanistic studies indicate that DNA protein cross-links are not intermediates en route to strand scission and that C2 deprotonation is the rate-determining step. The use of mutant histone H4 proteins demonstrates that the lysine-rich tail that is often post-translationally modified in cells contributes to the cleavage of L but is not the sole source of the enhanced cleavage rates. Consideration of DNA repair in cells suggests that L formation in nucleosomal DNA as part of bistranded lesions by antitumor antibiotics results in de facto double strand breaks, the most deleterious form of DNA damage.