화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.134, No.20, 8356-8359, 2012
Directed Assembly of DNA-Functionalized Gold Nanoparticles Using Pyrrole-Imidazole Polyamides
Traditional methods for the construction of nanoparticle arrays and lattices exploit Watson-Crick base pairing of single-stranded DNA sequences as a proxy for self-assembly. Although this approach has been utilized in a variety of applications in nanoassembly, diagnostics, and biomedicine, the diversity of this recognition lexicon, could be considerably increased by developing strategies that recognize the base-pairing landscape of double-stranded DNA (dsDNA) sequences. Herein we describe the first report of programmed gold nanoparticle (GNP) aggregation directed by the recognition of dsDNA sequences using pyrrole-imidazole polyamide-GNP (PA-GNP) conjugates. We demonstrate the reversibility and selectivity of this strategy for forming GNP aggregates in the presence of fully matched dsDNA sequences relative to dsDNA sequences containing one- and two-base-pair mismatches.