화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.134, No.31, 13056-13065, 2012
Interference of the Surface of the Solid on the Performance of Tethered Molecular Catalysts
The catalytic performance of cinchonidine in the promotion of thiol additions to conjugated ketones was used as a probe to assess the tethering of molecular functionality onto solid surfaces using well-known "click" chemistry involving easy-to-react linkers. It has been assumed in many applications that the tethered molecules retain their chemical properties and dominate the chemistry of the resulting solid systems, but it is shown here that this is not always the case. Indeed, a loss of enantioselectivity was observed upon tethering, which could be accounted for by a combination of at least three effects: (1) the nonselective catalytic activity of the surface of the solid itself; (2) the activity of the OH species generated by hydrolysis of some of the Si-alkoxy groups in the trialkoxy moieties used to bind many linkers to oxide surfaces; and (3) the bonding of the molecule to be tethered directly to the surface. Several ideas were also tested to minimize these problems, including the silylation of the active OH groups within the surface of the oxide support, the selection of solvents to optimize silane polymerization and minimize their breaking up via hydrolysis or alcoholysis reactions, and the linking at defined positions in the molecule to be tethered in order to minimize its ability to interact with the surface.