- Previous Article
- Next Article
- Table of Contents
Journal of the Electrochemical Society, Vol.158, No.8, B1029-B1041, 2011
Oxygen Reduction Reaction Electrocatalytic Activity of Glancing Angle Deposited Platinum Nanorod Arrays
The electrocatalytic oxygen reduction reaction (ORR) activity of vertically-aligned Pt nanorods has been evaluated utilizing cyclic voltammetry (CV) and rotating-disk electrode (RDE) techniques in a 0.1 M HClO(4) solution at temperatures ranging from 20 to 60 degrees C. A glancing angle deposition (GLAD) technique was used to fabricate Pt nanorod arrays on glassy carbon (GC) electrodes. GLAD catalyst nanorods, without any carbon support, have been produced at different lengths varying between 50 and 400 nm, corresponding to 0.04-0.32 mg/cm(2) Pt loadings, with diameter and spacing values ranging from about 5 up to 100 nm. The scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) results reveal that Pt nanorods are well-isolated, vertically aligned, and single-crystal. Crystal orientation analysis demonstrates that large surface area Pt nanorod sidewalls are mainly dominated by Pt(110) planes, which is known to be the most active crystal plane of Pt for the ORR. Compared to a commercial high-surface-area-supported Pt (Pt/C) catalyst, the CV results show that the Pt-nanorod electrocatalyst exhibits a more positive oxide reduction peak potential, indicating that GLAD Pt nanorods are less oxophilic. Moreover, the nanorods exhibit enhanced stability against loss of electrochemically-active surface area as a result of potential cycling in acidic electrolyte as compared to the Pt/C catalyst. Specific ORR activities determined by the RDE technique for GLAD Pt nanorods of different lengths are analyzed and compared to literature values for polycrystalline Pt, nano-structured thin film Pt (3M NSTF Pt), and to those measured for Pt/C. RDE results reveal that Pt-nanorod electrocatalysts exhibit higher area-specific activity, higher electron-transfer rate constant, and comparable activation energy for ORR than those of Pt/C due to their larger crystallite size, single-crystal property, and dominance of the preferred crystal orientations for ORR. However, Pt nanorods show lower mass specific activity than that of Pt/C electrocatalyst due to the large diameter of nanorods. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3599901] All rights reserved.