화학공학소재연구정보센터
Korean Journal of Rheology, Vol.10, No.3, 173-183, September, 1998
대진폭 전단변형하에서 폴리이소부틸렌 농후용액의 비선형 점탄성 거동
Nonlinear Viscoelastic Behavior of Concentrated Polyisobutylene Solutions in Large Amplitude Oscillatory Shear Deformation
초록
본 연구에서는 Advanced Rheometric Expansion System(ARES)를 사용하여 대진폭 진동 전단 변형하에서 발생하는 폴리이소부틸렌(PIB)농후 용액의 비선형 점탄성 거동을 저장탄성율과 동적점도의 변형량 의존성 및 응력파형의 fast Fourier transform(FFT) 해석을 통해 고찰하였다. 스트레인 진폭을 단계적으로 증가시키면서 측정한 동적 점탄성으로부터 저장탄성율 및 동적점도의 선형 응답한계를 결정하고 이들에 미치는 각주파수의 영향을 조사하였다 그리고 응력파형의 Fourier전개로부터 유도되는 비선형 점탄성 함수를 사용하여 비선형 거동을 설명하였다. 끝으로 비선형 점탄성 거동의 정도를 나타내는 비선형 거동 지수를 정의하고 이들에 미치는 각주파수의 영향에 대해 검토하였다 이상의 연구를 통해 얻어진 결과를 요약하면 다음과 같다. (1)선형 응답한계는 고분자 용액의 특성시간의 역수보다 높은 각주파수 범위 에서는 일정한 값을 유지하지만, 특성시간의 역수보다 낮은 각주파수 영역에서는 각주파수가 감소할수록 증가한다. (2)선형 응답한계 이상의 대변형하에서는 3차 비선형 점탄성 함수 이상의 고차항의 영향이 크게 작용하며 이로인해 비선형 거동이 발생한다 (3)스트레인 진폭을 단계적으로 증가시키면서 측정한 저장탄성율 및 동적점도의 변형량 의존성은 응력파형의 Fourier transform으로부터 유도된 1차 비선형 점탄성 함수의 변형량 의존성을 나타낸다. (4)저장탄성율 및 동적점도의 변형량 의존성으로부터 유도된 비선형 거동지수는 탄성적 성질과 점성적 성질에 대한 비선형 특성을 평가하기 위한 유용한 방법으로 인정된다. (5)비선형 점탄성 거동의 정도를 나타내는 비선형 거동지수는 특정한 각주파수에서 최대치를 가지며 또한 탄성적 거동이 점성적 거동에 비해 더욱 큰 각주파수 의존성을 나타낸다
Using an Advanced Rheometric Expansion System (ARES), the nonlinear visconelastic behavior of concentrated polyisobutylene (PIB) solutions in large amplitude oscillatory shear fields has been investigated by analyzing the strain amplitude dependence of the dynamic properties and the fast Fourier transform (FFT) analysis. In this Paper, the strain limits of linear viscoelastic response were determined and the effect of angular frequency on these values was examined. Further, the nonlinear behavior was interpreted using the nonlinear viscoelastic functions derived from the Fourier spectrum of the stress response. Finally, the nonlinear behavior indices were defined and the effect of angular frequency on these values was discussed. Main results obtained from this study can be summarized as follows:(1) The strain limits of linear viscoelastic response increase with decreasing angular frequency at range lower than the inverse value of the characteristic time. (2) The higher harmonic terms of the nonlinear viscoelastic functions show an obvious effect at large strain amplitude range where the nonlinear behavior occurs. (3) The strain dependence of the experimentally measured storage modulus and dynamic viscosity represents that of the calculated first-harmonic nonlinear viscoelastic functions. (4) The nonlinear behavior indices derived from the strain dependence of storage modulus and dynamic viscosity can be regarded as an effective method to evaluate the nonlinear viscoelastic properties. (5) The nonlinear behavior indices have the maximum values at a specific angular frequency, and the elastic behavior shows a stronger dependence on the angular frequency than does the viscous behavior. Keywords : Large amplitude oscillatory shear, Concentrated polyisobutylene solution, Fast Fourier transform, Strain limits of linear viscoelastic response, Nonlinear viscoelastic function, Nonlinear behavior index : Large amplitude oscillatory shear, Concentrated polyisobutylene solution, Fast Fourier transform, Strain limits of linear viscoelastic response, Nonlinear viscoelastic function, Nonlinear behavior index
  1. Philippoff W, J. Appl. Phys., 25, 1102 (1954) 
  2. Philippoff W, Trans. Soc. Rheol., 10, 317 (1966) 
  3. MacDonald IF, Marsh BD, Ashare E, Chem. Eng. Sci., 24, 1615 (1969) 
  4. Gross LH, Maxwell B, Trans. Soc. Rheol., 16, 577 (1972) 
  5. Jongschaap RJJ, Knapper KH, Lopulissa JS, Polym. Eng. Sci., 18, 788 (1978) 
  6. Astarita G, Jongschaap RJJ, J. Non-Newton. Fluid Mech., 3, 281 (1977)
  7. Onogi S, Masuda T, Matsumoto T, Trans. Soc. Rheol., 14, 275 (1970) 
  8. Kotaka T, Watanabe H, J. Soc. Rheol. Jpn., 10, 24 (1982)
  9. Kobayashi M, Ishikawa S, Samejima M, Chem. Pharm. Bull., 30, 4468 (1982)
  10. Onogi S, Matsumoto T, Polym. Eng. Rev., 1, 45 (1981)
  11. MacSporran WC, Spiers RP, Rheol. Acta, 21(184), 193 (1982) 
  12. MacSporran WC, Spiers RP, Rheol. Acta, 23, 90 (1984) 
  13. Ganeriwala SN, Rotz CA, Polym. Eng. Sci., 27, 165 (1987) 
  14. Gamota DR, Wineman AS, Filisko FE, J. Rheol., 37, 919 (1993) 
  15. Pearson DS, Rochefort WE, J. Polym. Sci. B: Polym. Phys., 20, 83 (1982)
  16. Vrentas JS, Venerus DC, Vrentas CM, J. Non-Newton. Fluid Mech., 40, 1 (1991) 
  17. Yosick JA, Giacomin AJ, Moldenaers P, J. Non-Newton. Fluid Mech., 70(1-2), 103 (1997) 
  18. Green AE, Rivlin RS, Arch. Rat. Mech. Anal., 1, 1 (1957)
  19. Green AE, Rivlin RS, Arch. Rat. Mech. Anal., 3, 82 (1959) 
  20. Green AE, Rivlin RS, Arch. Rat. Mech. Anal., 4, 387 (1960)
  21. Oppenheim AV, Schafer RW, "Discreate-Time Signal Processing," Prentice-Hall, New Jersey, Chap. 8 (1989)
  22. Giacomin AJ, Dealy JM, "Techniques in Rheological Measurement," ed., by A.A. Collyer, Champman & Hall, Combridge, Chap. 4 (1993)
  23. Press WH, Teukolsky SA, Vetterling WT, Flannery BP, "Numerical Recipes in C," 2nd ed., Cambredge University Press, Cambridge, Chap. 12 (1992)
  24. Song KW, Chang GS, Kim CB, Lee JO, Paik JS, J. Korean Fiber. Soc., 33, 1083 (1996)
  25. Song KW, Chang GS, Theor. Appl. Rheol., 1, 85 (1997)
  26. Song KW, Chang GW, Proc. 4th Asian Text. Conf., Vol. 1, Taipei, Taiwan, p. 80 (1997)
  27. Tanner RI, AIChE J., 15, 177 (1969) 
  28. Coleman BD, Noll W, Rev. Mod. Phys., 33, 239 (1961) 
  29. Orbey N, Dealy JM, J. Rheol., 35, 1035 (1991) 
  30. Bird RB, Curtiss CF, Amstrong RC, Hassager O, "Dynamics of Polymeric Liquids," Vol. 2: Kinetic Theory, 2nd ed., John Wiley & Sons, New York, Chap. 13 (1987)
  31. Yasuda K, Amstrong RC, Cohen KE, Rheol. Acta, 20, 163 (1981) 
  32. Dealy JM, Wissbrun KF, "Melt Rheology and Its Role in Plastics Processing: Theory and Application," Van Nostrand Reinhold, New York, Chap. 5 (1990)
  33. Tee TT, Dealy JM, Trans. Soc. Rheol., 19, 595 (1975) 
  34. Yen HC, McIntire LV, Trans. Soc. Rheol., 16, 711 (1972) 
  35. Bernstein B, Kearsley EA, Zapas LJ, Trans. Soc. Rheol., 7, 391 (1963)