화학공학소재연구정보센터
Langmuir, Vol.27, No.10, 6490-6495, 2011
Simultaneous Fabrication of Superhydrophobic and Superhydrophilic Polyimide Surfaces with Low Hysteresis
Polyimide is of great interest in the field of MEMS and microtechnology. It is often used for its chemical, thermal, mechanical, and optical properties. In this paper, an original study is performed on controlled variation of polyimide film wettability. A two-step microtexturing method is developed to transform hydrophilic polyimide surfaces into a superhydrophobic surface with low magnitude of hysteresis (Delta theta approximate to 0 degrees and contact angle theta approximate to 158 degrees). This method is based on the conception of a new kind of fakir surface with triangular cross-section micropillars, the use of a two-scale roughening, and a C(4)F(8) coating. We demonstrate that the absence of hysteresis is related to a combination of two scales of structuring and the pillar shape. The technology that has been developed results in the simultaneous fabrication of adjacent superhydrophobic and superhydrophilic small areas, which allows an effect of self-positioning of water droplets when deposited on such a checkerboard-like surface.