Langmuir, Vol.27, No.11, 6830-6835, 2011
Vibrational Characteristics of Outer-Sphere Surface Complexes: Example of Sulfate Ions Adsorbed onto Metal (Hydr)oxides
The vibrational characteristics of outer-sphere complexes of sulfate at several mineral oxide-water interfaces were investigated by in situ attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy. In the IR spectra obtained from surface outer-sphere complexes, only one peak of the asymmetric stretching vibrational mode v(3) similar to that of free sulfate ion SO(4)(2-) in aqueous solution is observed. However, on the investigated (hydr)oxide surfaces of Al(3+), Ti(4+), Fe(2+/3+), Cr(3+), Ce(4+), Cu(2+), Y(3+), Zn(2+), and Nd(3+), a shift of up to 14 cm(-1) was found, which was correlated to the polarizing power of the metal cations. A high polarizing power was found to result in a stronger shift of v(3) compared to that of the aqueous SO(4)(2-) ion. Furthermore, the impact of the metal oxide structure on the characteristics of the formed outer-sphere complex was negligible because different Al and Fe (hydr) oxides did not show any changes in the respective IR spectra. Finally, the ionic strength (1-10(-4) M) and pH (6.8-3.1) have been modified to change the surface potential, showing no direct influence on the spectra (i.e., on the geometry of the outer-sphere complex).