화학공학소재연구정보센터
Langmuir, Vol.27, No.15, 9638-9643, 2011
Comparison of Sessile Drop and Captive Bubble Methods on Rough Homogeneous Surfaces: A Numerical Study
Quasi-static experiments using sessile drops and captive bubbles are the most employed methods for measuring advancing and receding contact angles on real surfaces. These observable contact angles are the most easily accessible and reproducible. However, some properties of practical surfaces induce certain phenomena that cause a built-in uncertainty in the estimation of advancing and receding contact angles. These phenomena are well known in surface thermodynamics as stick-slip phenomena. Following the work of Marmur (Marmur, A. Colloids Surf., A 1998, 136, 209-215), where the stick-slip effects were studied with regard to sessile drops and captive bubbles on heterogeneous surfaces, we developed a novel extension of this study by adding the effects of roughness to both methods for contact angle measurement. We found that the symmetry between the surface roughness problem and the chemical heterogeneity problem breaks down for drops and bubbles subjected to stick-slip effects.