화학공학소재연구정보센터
Langmuir, Vol.27, No.23, 13965-13969, 2011
Long-Range Alignment of Gold Nanorods in Electrospun Polymer Nano/Microfibers
In this study, a scalable fabrication technique for controlling and maintaining the nanoscale orientation of gold nanorods (GNRs) with long-range macroscale order has been achieved through electrospinning. The volume fraction of GNRs with an average aspect ratio of 3.1 is varied from 0.006 to 0.045 in aqueous poly(ethylene oxide) solutions to generate electrospun fibers possessing different GNR concentrations and measuring 40-3000 nm in diameter. The GNRs within these fibers exhibit excellent alignment with their longitudinal axis parallel to the fiber axis n. According to microscopy analysis, the average deviant angle between the GNR axis and n increases modestly from 3.8 to 13.3 degrees as the fiber diameter increases. Complementary electron diffraction measurements confirm preferred orientation of the {100} GNR planes. Optical absorbance spectroscopy measurements reveal that the longitudinal surface plasmon resonance bands of the aligned GNRs depend on the polarization angle and that maximum extinction occurs when the polarization is parallel to n.