화학공학소재연구정보센터
Langmuir, Vol.28, No.1, 872-882, 2012
Formation of Polyampholyte Brushes via Controlled Radical Polymerization and Their Assembly in Solution
We describe the formation of polyampholytic block copolymer brushes and their assembly in solution. Specifically, we employ "surface-initiated" activators regenerated by electron transfer atom transfer radical polymerization (ARGET-ATRP) sequentially to form diblock copolymer grafts comprising blocks of poly[2-(dimethyiamino) ethyl methacrylate] (PDMAEMA) and poly(sodium methacrylate) (PNaMA) on flat impenetrable silica surfaces, i.e., SiO(x)/PNaMA-b-PDMAEMA and SiO(x)/PDMAEMA-b-PNaMA. Protonation of the PNaMA block results in formation of poly(methacrylic acid) (PMAA). We demonstrate that ARGET-ATRP of NaMA provides a convenient route to preparation of PMAA, which is an alternative method to the more traditional approach based on preparing PMAA by polymerizing tert-butyl methacrylate (tBMA) followed by cleavage of the tert-butyl group. We also discuss conformational changes of the individual polyelectrolyte blocks in solution as a function of solution pH by monitoring adsorption behavior of functionalized polystyrene spheres.