화학공학소재연구정보센터
Langmuir, Vol.28, No.7, 3553-3557, 2012
Sortase A-Catalyzed Site-Specific Coimmobilization on Microparticles via Streptavidin
A microparticle surface was designed by the unique method incorporating streptavidin biotin affinity and sortase A (SrtA)-catalyzed transpeptidation. Leucine-proline-glutamate-threonine-glycine-tagged streptavidin (Stav-LPETG) was immobilized on the surface using streptavidin biotin affinity, and GGGGG-tagged red fluorescent protein (Gly5-RFP) was conjugated with SrtA. Biotinylated fluorescein isothiocyanate (biotin FITC) was then bound to residual biotin-binding sites in Stav-LPETG. The resulting particles had RFP and FITC immobilized on the surface via Stav-LPETG, and RFP- and FITC-associated fluorescence was observed using fluorescence microscopy. Finally, GGG-tagged glucose oxidase and biotinylated horseradish peroxidase were immobilized on the microparticle surface, resulting in a functional particle capable of detecting glucose. This particle can be repeatedly used and is more sensitive in detecting glucose than particles prepared using chemical modification. Our method provides a simple strategy for site-specific coimmobilization on molecular surfaces and expands the use of protein hybrid devices.