화학공학소재연구정보센터
Langmuir, Vol.28, No.11, 5182-5189, 2012
Electrochemical and Microscopic Characteristics of Thiolipid Layers as Simple Models of Cell Membranes
The thiolipid 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE) has been proposed as a component of a simple model of cell membranes, which can be used for the studies of the interactions with drugs and other biologically important species. Depending on the deposition technique, Langmuir-Blodgett method or self-assembly, the obtained model membranes exhibit differences in the organization and properties, as shown by electrochemical techniques. The surface concentration and area per molecule of DPPTE model membranes were determined using chronocoulometry, which gives more reliable results than the widely used reductive desorption method. The mean surface concentration of self-assembled DPPTE monolayer deposited on gold electrode is equal to 4.52 X 10(-10) mol.cm(-2), which corresponds to the area per molecule of 36.7 angstrom(2). Moreover, model membranes prepared by means of LB method tend to be less compact than self-assembled DPPTE monolayers. Adsorption/desorption behavior of the DPPTE molecules on Au(111) was also visualized by EC-STM method. At the beginning of the process at negative potentials, the physisorbed molecules formed a flat-lying adlayer. Changing the potential in the positive direction resulted in the formation of Au-S bonds, and as a consequence the upstanding phase with higher packing density was observed. The thickness of such a layer determined by atomic force microscopy method is equal to 2.08 nm and corresponds to that of a monomolecular film.