Langmuir, Vol.28, No.14, 6132-6140, 2012
How Citrate Ligands Affect Nanoparticle Adsorption to Microparticle Supports
Residual ligands from colloidal synthesis of nanoparticles influence adsorption of nanoparticles to supports and may complicate fabrication of nanoparticle-decorated microparticles. In this work, we studied the adsorption of completely ligand-free metal nanoparticles and controlled ligand-functionalized nanoparticles to chemically inert microparticle supports. Adsorption of ligand-free silver nanoparticles to barium sulfate microparticle supports is a quantitative, nonreversible process following Freundlich adsorption isotherm. However, adsorption efficiency is very sensitive to ligand concentration applied during laser-based synthesis of silver nanoparticles: exceeding a specific threshold concentration of 50 mu mol/L citrate equal to a nanoparticle ligand surface coverage of about 50%, results in an almost complete prevention of nanoparticle adsorption because of electrosteric repulsion by ligand shell. Laser-based synthesis of nanoparticle-decorated microparticles is demonstrated with a variety of metal nanoparticles (Ag, Au, Pt, Fe) and supporting microparticles (calcium phosphate, titanium dioxide, barium sulfate) with application potential in heterogeneous catalysis or biomedicine where ligand control offers extra value, like enhanced catalytic activity or biocompatibility.