Langmuir, Vol.28, No.24, 8902-8908, 2012
Bottom-Up Assembly of Colloidal Gold and Silver Nanostructures for Designable Plasmonic Structures and Metamaterials
We report on bottom-up assembly routes for fabricating plasmonic structures and metamaterials composed of colloidal gold and silver nanostructures, such as nanoparticles ("metatoms") and shape-controlled nanocrystals. Owing to their well-controlled sizes/shapes, facile surface functionalization, and excellent plasmonic properties in the visible and near-infrared regions, these nanoparticles and nanocrystals are excellent building blocks of plasmonic structures and metamaterials for optical applications. Recently, we have utilized two kinds of bottom-up techniques (i.e., multiple-probe-based nanomanipulation and layer-by-layer self-assembly) to fabricate strongly coupled plasmonic dimers, one-dimensional (1D) chains, and large-scale two-dimensional/three-dimensional (2D/3D) nanoparticle supercrystals. These coupled nanoparticle/nanocrystal assemblies exhibit unique and tunable plasmonic properties, depending on the material composition, size/shape, intergap distance, the number of composing nanoparticles/nanocrystals (1D chains), and the nanoparticle layer number in the case of 3D nanoparticle supercrystals. By studying these coupled nanoparticle/nanocrystal assemblies, the fundamental plasmonic metamaterial effects could be investigated in detail under well-prepared and previously unexplored experimental settings.