Materials Chemistry and Physics, Vol.130, No.3, 1162-1168, 2011
Mimicking cell membrane-like structures on alkylated silicon surfaces by peptide amphiphiles
We present a new strategy for flexible attachment of peptide amphiphiles on functionalized silicon surfaces. This method involves the production of an alkylated surface on which a lipidated peptide can then be attached through hydrophobic interaction. We applied this to two derivatives of amphiphilic peptide molecules with the same amino acid sequence (A-A-A-A-G-G-G-E-R-G-D) but different in alkyl chain lengths (palmitic acid, undecanoic acid). The basis of this work was to develop substrates which are more biocompatible and bioactive. The ultra-thin peptide amphiphile films were characterized using electrical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (ATR-FTIR) spectroscopy. The results demonstrated that the length of the alkyl chain in the peptide amphiphile affects the packing and coverage of the peptides on the silicon surface. (C) 2011 Elsevier B.V. All rights reserved.