Polymer Bulletin, Vol.68, No.4, 1079-1091, 2012
Rheological and mechanical properties of polypropylene/thermoplastic starch blend
Starch as an inexpensive and renewable source has been used as a filler for environmentally friendly plastics for about two decades. In order to improve the compatibility between hydrophilic starch granules and hydrophobic polypropylene (PP), glycerol used as a plasticizer for starch to enhance the dispersion and the interfacial affinity in thermoplastic starch (TPS)/PP blend. In this study, PP was melt blended with thermoplastic starch (TPS) using a single screw extrusion process and molded using injection molding process to investigate the rheological and mechanical properties of these blends. TPS viscosity measurements were performed on the single screw extruder. Rheological properties were studied using a capillary rheometer and the Bagley's correction was performed. Mechanical analysis (stress-strain) was performed using Testometric M350-10KN. The rheological properties showed that the viscosity of TPS decreases with increasing glycerol content in TPS. Also, it was found that PP/TPS blends are pseudo plastic in nature and the flow activation energy of the blends is greater than that of PP. Mechanical results showed that strain at break of the blends is lower than that of PP, whereas the Young's modulus of the blends is higher than that of PP.