화학공학소재연구정보센터
Polymer Engineering and Science, Vol.51, No.9, 1883-1890, 2011
Fabrication of Nano/Microfiber Scaffolds Using a Combination of Rapid Prototyping and Electrospinning Systems
Tissue-engineered scaffolds require an adequate three-dimensional (3-D) structure for cell growth and attachment. Solid freeform fabrication can provide the interconnected pore to induce the cell ingrowth, and electrospinning technique can make the nanofiber web with high surface for cell attachment. In this study, 3-D polycaprolactone (PCL) scaffolds were fabricated using a rapid prototyping plotting system coupled with an electrospinning apparatus. Scanning electron micrographs showed that these hybrid scaffolds had a regular microfiber structure with interconnected pores and a nanofiber distribution appropriate for cell attachment. Scaffolds were seeded with MG63 cells for in vitro study and implanted in the tibia of rabbit for in vivo study. The resulting structure also facilitated cell adhesion, proliferation, and differentiation as evidenced by biochemical analyses and confocal microscopy. The hybrid scaffolds also exhibited good biocompatibility and osteoconductivity in animal studies. POLYM. ENG. SCI., 51:1883-1890, 2011. (C) 2011 Society of Plastics Engineers