화학공학소재연구정보센터
Rheologica Acta, Vol.51, No.2, 127-142, 2012
Linear and non-linear viscoelastic properties of ethylene vinyl acetate/nano-crystalline cellulose composites
This paper reports on the melt rheological properties of ethylene vinyl acetate containing between 0 and 10 wt.% of nano-crystalline cellulose (NCC). A complete set of rheological tests including frequency sweeps, shear transients, and uniaxial elongations was performed. Frequency sweeps showed that at low frequencies, a pseudo solid-like behavior was obtained for NCC concentrations higher than 5%. This behavior was related to hydrogen bonding between NCC particles and the creation of particle networks as the result of particle-particle interactions. For transient shear tests, all compositions presented a stress overshoot at high shear rates before reaching a steady state. It was found that the amplitude of this overshoot depends on both NCC content and shear rate. On the other hand, the time to reach the maximum was found to be highly shear rate dependent but concentration dependence was rather weak. For uniaxial extensional flow, higher extensional viscosity was observed with increasing NCC content. On the other hand, strain hardening was found to decrease with increasing NCC content.