Rheologica Acta, Vol.51, No.4, 329-342, 2012
Detection of viscoelasticity in aggregating dilute protein solutions through dynamic light scattering-based optical microrheology
This study illustrates the applicability of dynamic light scattering (DLS)-based optical microrheology in generating new insights into the rheological response of dilute protein solutions as they start to form insoluble aggregates under the influence of a thermal stress. The technique is also shown to provide a quick method for measuring the viscosity in protein solutions. The optical microrheological technique, which is based on DLS with improved single scattering detection, is shown here to capture the rich dynamics in these systems, where traditional mechanical rheometry cannot be effectively employed due to low torque generation and high sample volume requirements and the more widely known diffusing wave spectroscopy microrheology technique is not desirable due to the required high probe particle concentrations The study illustrates the careful consideration which must be given to the tracer particle surface chemistry, tracer particle concentration and tracer particle size in order to extract out rheological responses that are truly representative of the underlying protein dynamics and microstructure. We outline a procedure for ensuring that the pitfalls inherent to this type of measurement are avoided.
Keywords:Biopolymer;Elastic properties;Protein;Viscoelasticity;Dynamic light scattering;Microrheology