Advanced Functional Materials, Vol.22, No.2, 397-404, 2012
Efficiency Enhanced Hybrid Solar Cells Using a Blend of Quantum Dots and Nanorods
The cell performance of organic-inorganic hybrid photovoltaic devices based on CdSe nanocrystals and the semiconducting polymer poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) is strongly dependent on the applied polymer-to-nanocrystal loading ratio and the annealing temperature. It is shown here that higher temperatures for the thermal annealing step have a beneficial impact on the nanocrystal phase by forming extended agglomerates necessary for electron percolation to enhance the short-circuit current. However, there is a concomitant reduction of the open-circuit voltage, which arises from energy-level alterations of the organic and the inorganic component. Based on quantum dots and PCPDTBT, we present an optimized organicinorganic hybrid system utilizing an annealing temperature of 210 degrees C, which provides a maximum power conversion efficiency of 2.8%. Further improvement is obtained by blending nanocrystals of two different shapes to compose a favorable n-type network. The blend of spherical quantum dots and elongated nanorods results in a well-interconnected pathway for electrons within the p-type polmer matrix, yielding maximum efficiencies of 3.6% under simulated AM 1.5 illumination.