- Previous Article
- Next Article
- Table of Contents
Applied Biochemistry and Biotechnology, Vol.167, No.6, 1475-1488, 2012
Bioethanol Production Involving Recombinant C. thermocellum Hydrolytic Hemicellulase and Fermentative Microbes
The enhancement of the biomass productivity of Escherichia coli cells harbouring the truncated 903 bp gene designated as glycoside hydrolase family 43 (GH43) from Clostridium thermocellum showing hemicellulase activity along with its further use in simultaneous saccharification and fermentation (SSF) process is described. (Phosphoric acid) H3PO4-acetone treatment and ammonia fibre expansion (AFEX) were the pretreatment strategies employed on the leafy biomass of mango, poplar, neem and asoka among various substrates owing to their high hemicellulose content. GH43 showed optimal activity at a temperature of 50 A degrees C, pH 5.4 with stability over a pH range of 5.0-6.2. A 4-fold escalation in growth of the recombinant E. coli cells was observed when grown using repeated batch strategy in LB medium supplemented with glucose as co-substrate. Candida shehatae utilizing pentose sugars was employed for bioethanol production. AFEX pretreatment proved to be better over acid-acetone technique. The maximum ethanol concentration (1.44 g/L) was achieved for AFEX pretreated mango (1%, w/v) followed by poplar with an ethanol titre (1.32 g/L) in shake flask experiments. A 1.5-fold increase in ethanol titre (2.11 g/L) was achieved with mango (1%, w/v) in a SSF process using a table top 2-L bioreactor with 1 L working volume.
Keywords:Simultaneous saccharification and fermentation (SSF);Repeated batch;Glycoside hydrolase family 43(GH43);Clostridium thermocellum;H3PO4-acetone;AFEX;Candida shehatae