화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.92, No.3, 571-581, 2011
Bioinformatics and molecular approaches to detect NRPS genes involved in the biosynthesis of kurstakin from Bacillus thuringiensis
Degenerated primers designed for the detection by polymerase chain reaction of nonribosomal peptide synthetases (NRPS) genes involved in the biosynthesis of lipopeptides were used on genomic DNA from a new isolate of Bacillus thuringiensis CIP 110220. Primers dedicated to surfactin and bacillomycin detection amplified sequences corresponding respectively to the surfactin synthetase operon and to a gene belonging to a new NRPS operon identified in the genome of B. thuringiensis serovar pondicheriensis BSCG 4BA1. A bioinformatics analysis of this operon led to the prediction of an NRPS constituted of seven modules beginning with a condensation starter domain and which could be involved in the biosynthesis of a heptalipopeptide similar to kurstakin. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS) performed on whole cells of B. thuringiensis CIP 110220 confirmed the production of kurstakin by this strain. The kurstakin operon was thus used to design a new set of degenerated primers specifically to detect kurstakin genes. These primers were used to screen kurstakin producers in a collection of nine B. thuringiensis strains isolated from different areas in Algeria and two from the Pasteur Institute collection. For eight among the 11 tested strains, the amplified fragment matched with an operon similar to the kurstakin operon and found in the newly sequenced genome of Bacillus cereus or B. thuringiensis serovar pulsiensis, kurstaki, and thuringiensis. Kurstakin production was detected by MALDI-ToF-MS on whole cells for six strains. This production was compared with the spreading of the strains and their antimicrobial activity. Only the spreading can be correlated with the kurstakin production.