Applied Surface Science, Vol.258, No.1, 218-224, 2011
The synthesis and characterization of Ti/SnO2-Sb2O3/PbO2 electrodes: The influence of morphology caused by different electrochemical deposition time
For the electrochemical oxidative degradation of wastewater, it is crucial for electrodes to be highly catalytic active, stable in performance and inexpensive in price. This study focuses on the preparation of the Ti/SnO2-Sb2O3/PbO2 anodes by anodic deposition under galvanostatic conditions and their electrocatalytic activity affected by crystal structure and surface roughness under different electrochemical deposition time, with phenol taken as the model pollutant to evaluate the electrocatalytic activity. The electrode surface morphology is characterized by XRD and SEM-EDX. The treatment effect of phenol is reflected by electrochemical analysis like CV and LSV. An important conclusion from experiment is that electrochemical deposition time has a major impact on electrocatalytic activity with the optimal deposition time observed around 30 min. At both deposition time beyond this optimal time window, electrocatalytic activity of phenol is substantially lowered. Increasing in electrochemical deposition time leads to a more uniform and smooth electrode surface, which enjoys a more compact structure than the "cracked-mud" one but lower specific surface area and catalytic activity. On the contrary, the "cracked-mud" structure means potentially a unique porous structure, which makes morphology at 30 min a perfect one for high electrocatalytic activity. (C) 2011 Elsevier B.V. All rights reserved.