Biochemical and Biophysical Research Communications, Vol.414, No.2, 321-325, 2011
Molecular design of new sodium channel blockers
Animal toxins targeting voltage-gated sodium channels (VGSCs) have been considered as valuable tools for studying pharmacological functions of VGSCs. Recently we have reported that Drosotoxin (DrTx), an evolution-guided chimeric peptide, exhibits highly selective blocking activity to tetrodotoxin-resistant (TTx-R) Na(+) channels in rat dorsal root ganglion (DRG) neurons. In this study, we constructed five new analogues of DrTx designed by altering amino-terminal sequences of DrTx, two of which have significant inhibitory effects on both TTX-R and tetrodotoxin-sensitive (TTX-S) Na(+) channels. Structure-activity relationship studies allow us to recognize key functional roles of a positive charge at site seven and a negative charge at site eight in evolving new blocking activity to TTX-S sodium channels. This work will enhance our understanding of the molecular determinants of toxins affecting VGSCs and aid the rational design of subtype-specific blockers of the channels. (C) 2011 Elsevier Inc. All rights reserved.