- Previous Article
- Next Article
- Table of Contents
Biomacromolecules, Vol.13, No.7, 2211-2217, 2012
In Vivo Degradation and Tissue Response to Poly(5-ethylene ketal epsilon-caprolactone-co-D,L-lactide)
Low molecular weight poly(5-ethylene ketal epsilon-caprolactone-co-D,L-lactide) (PEKCDLLA) is being considered as a viscous liquid, injectable depot for localized drug delivery. This polymer degrades in vitro via surface erosion, which is potentially advantageous for the proposed application. However, the in vivo degradation rate and mechanism, and tissue response, to polymers based on 5-ethylene ketal epsilon-caprolactone have not yet been reported. The purpose of this study was to measure the in vivo weight loss and change in polymer properties and assess the tissue response to PEKCDLLA after subcutaneous injection in rats. The tissue response was assessed histologically using Masson's trichrome staining and immunohistochemically by staining for CD68 positive cells. The polymer lost weight with time in a nearly linear fashion but did not exhibit significant changes in number average molecular weight, polydispersity index, and glass transition temperature or monomer ratio, consistent with a surface erosion process. The tissue response to the polymer was moderate and comparable to that reported in the literature for other degradable polymers used in clinical applications. These findings indicate that PEKCDLLA is a promising candidate for injectable drug delivery.