Biotechnology Letters, Vol.33, No.12, 2503-2508, 2011
Molecular analysis of genetic fidelity in Cannabis sativa L. plants grown from synthetic (encapsulated) seeds following in vitro storage
The increasing utilization of synthetic (encapsulated) seeds for germplasm conservation and propagation necessitates the assessment of genetic stability of conserved propagules following their plantlet conversion. We have assessed the genetic stability of synthetic seeds of Cannabis sativa L. during in vitro multiplication and storage for 6 months at different growth conditions using inter simple sequence repeat (ISSR) DNA fingerprinting. Molecular analysis of randomly selected plants from each batch was conducted using 14 ISSR markers. Of the 14 primers tested, nine produced 40 distinct and reproducible bands. All the ISSR profiles from in vitro stored plants were monomorphic and comparable to the mother plant which confirms the genetic stability among the clones. GC analysis of six major cannabinoids [Delta(9)-tetrahydrocannabinol, tetrahydrocannabivarin, cannabidiol, cannabichromene, cannabigerol and cannabinol] showed homogeneity in the re-grown clones and the mother plant with insignificant differences in cannabinoids content, thereby confirming the stability of plants derived from synthetic seeds following 6 months storage.