Current Microbiology, Vol.65, No.1, 60-65, 2012
Effect of the Volume-to-Surface Ratio of Cultures on Escherichia coli Growth: An Experimental and Theoretical Analysis
The growth dynamics of bacterial populations are usually represented by the classical S-shaped profiles composed of lag, exponential and stationary growth phases. Although exceptions to this classical behavior occur, they are normally produced under non-standard conditions such as supply of two carbohydrates as sole carbon source. However, we here report variations in the classic S-shaped growth profiles of Escherichia coli under standard culturing conditions; explicitly, we found growth during transition to the stationary phase wherein the bacterial growth rate inversely depended on the volume-to-surface ratio of cultures (V/S); the reasons for this behavior were experimentally explored. To complement our experimental analysis, a theoretical model that rationalizes the bacterial response was developed; simulations based on the developed model essentially reproduced experimental growth curves. We consequently conclude that the effect of V/S on E. coli growth reflects an interplay between auto-catalytic bacterial growth, bacterial growth auto-inhibition, and, the relief of that inhibition.