Energy, Vol.42, No.1, 530-545, 2012
A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch
Combined heat and power units are playing an ever increasing role in conventional power stations due to advantages such as reduced emissions and operational cost savings. This paper investigates a more practical formulation of the complex non-convex, non-smooth and non-linear multi-objective dynamic economic emission dispatch that incorporates combined heat and power units. Integrating these types of units, and their power ramp constraints, require an efficient tool to cope with the joint characteristics of power and heat. Unlike previous approaches, the spinning reserve requirements of this system are clearly formulated in the problem. In this way, a new multi-objective optimisation based on an enhanced firefly algorithm is proposed to achieve a set of non-dominated (Pareto-optimal) solutions. A new tuning parameter based on a chaotic mechanism and novel self adaptive probabilistic mutation strategies are used to improve the overall performance of the algorithm. The numerical results demonstrate how the proposed framework was applied in real time studies. (C) 2012 Elsevier Ltd. All rights reserved.
Keywords:Combined heat and power unit;Dynamic economic emission dispatch;Enhanced firefly algorithm;Pareto-optimal front;Spinning reserve constraint