Industrial & Engineering Chemistry Research, Vol.51, No.14, 5282-5291, 2012
Identifying Key Life Cycle Assessment Metrics in the Multiobjective Design of Bioethanol Supply Chains Using a Rigorous Mixed-Integer Linear Programming Approach
The design of more sustainable bioethanol supply chains (SCs) has recently emerged as an active area of research. Most of the approaches presented so far have somehow a limited scope, as they focus on minimizing the emitted greenhouse gases as unique criterion, neglecting the damage caused in other impact categories. In this work, we address the multiobjective design of bioethanol SCs considering several life cycle assessment impacts. To overcome the numerical difficulties of dealing with several objective functions, we investigate the application of a rigorous mixed-integer linear programming-based dimensionality reduction method that minimizes the error of omitting objectives. The usefulness of this approach is tested through its application to the design of a bioethanol/sugar SC in Argentina, in which five environmental objectives are simultaneously optimized along with the net present value. The proposed method makes it possible to reduce the number of environmental indicators, thereby facilitating the calculation and analysis of the Pareto solutions.