Inorganic Chemistry, Vol.51, No.12, 6746-6752, 2012
A QMCF-MD Investigation of the Structure and Dynamics of Ce4+ in Aqueous Solution
A quantum-mechanical charge-field molecular dynamics simulation has been performed for a tetravalent Ce ion in aqueous solution. In this framework, the complete first and second hydration spheres are treated by ab initio quantum mechanics supplemented by an electrostatic embedding technique, making the construction of non-Coulombic solute-solvent potentials unnecessary. During the 10 Ps of simulation time, the structural aspects of the solution were analyzed by various methods. Experimental results such as the mean Ce-O bond distance and the predicted first-shell coordination number were compared to the results obtained from the simulation resolving some ambiguities in the literature. The dynamics of the system were characterized by mean ligand residence times and frequency/force constant calculations. Furthermore, Ce-O and Ce-H angular radial distribution plots were employed, yielding deeper insight into the structural and dynamical aspects of the system.