International Journal of Control, Vol.85, No.8, 1121-1129, 2012
Approximation error in PDE-based modelling of vehicular platoons
We study the problem of how much error is introduced in approximating the dynamics of a large vehicular platoon by using a partial differential equation, as was done in Barooah, Mehta, and Hespanha [Barooah, P., Mehta, P.G., and Hespanha, J.P. (2009), 'Mistuning-based Decentralised Control of Vehicular Platoons for Improved Closed Loop Stability', IEEE Transactions on Automatic Control, 54, 2100-2113], Hao, Barooah, and Mehta [Hao, H., Barooah, P., and Mehta, P.G. (2011), 'Stability Margin Scaling Laws of Distributed Formation Control as a Function of Network Structure', IEEE Transactions on Automatic Control, 56, 923-929]. In particular, we examine the difference between the stability margins of the coupled-ordinary differential equations (ODE) model and its partial differential equation (PDE) approximation, which we call the approximation error. The stability margin is defined as the absolute value of the real part of the least stable pole. The PDE model has proved useful in the design of distributed control schemes (Barooah et al. 2009; Hao et al. 2011); it provides insight into the effect of gains of local controllers on the closed-loop stability margin that is lacking in the coupled-ODE model. Here we show that the ratio of the approximation error to the stability margin is O(1/N), where N is the number of vehicles. Thus, the PDE model is an accurate approximation of the coupled-ODE model when N is large. Numerical computations are provided to corroborate the analysis.
Keywords:error analysis;partial differential equation;continuum approximation;stability margin;eigenvalue approximation;distributed control