Journal of Chemical Thermodynamics, Vol.45, No.1, 35-42, 2012
Densities, sound velocities, and refractive indexes of (tetralin plus n-decane) and thermodynamic modeling by Prigogine-Flory-Patterson model
Mixtures of tetralin (1,2.3,4-tetrahydronaphthalene), an aromatic cyclic molecule, and n-decane present asymmetries in chemical nature, shape, and chain length, and are frequently found, e.g., in naphtha or kerosene fractions. Aiming at understanding the impact of these asymmetries on some thermophysical properties, this work presents densities, sound velocities, and refractive indexes for this binary system along with the properties of the pure components at T = (293.15, 303.15, 313.15, 323.15, 333.15, and 343.15) K over whole composition range and atmospheric pressure. From these data, the following derived properties were obtained: isentropic compressibility, molar refractivity, excess volume, excess isentropic compressibility, molar refractivity deviations, and thermal expansion coefficient. Several sound velocity mixing rules were tested, and the best result was for Nomoto mixing rule. Pure component densities and sound velocities were correlated with Prigogine-Flory-Patterson (PFP) model. The binary interaction parameter for this model was obtained from correlation of excess volumes and isentropic compressibilities. This model correlated experimental densities very well and correlated reasonably well sound velocities and thermal expansion coefficient. (C) 2011 Elsevier Ltd. All rights reserved.