화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.116, No.34, 8731-8736, 2012
Application of Symmetry-Adapted Perturbation Theory to Small Ionic Systems
The application of symmetry-adapted perturbation theory (SAPT) to small ionic systems was investigated in the context of the accuracy of calculated interaction energies for alkali halides. Two forms of alkali halides were considered: ion pairs M+X- (M = Li, Na, K, Rb, and X = F, Cl, Br, I) and dimers (MX)(2). The influence of the order of energy correction terms included in SAPT and the effect of the so-called hybrid approach to SAPT on the accuracy of the calculated energies (such as the interaction energies in the ion pairs and the binding energies in the dimers with respect to two free monomers) were studied. The effects of the size of basis sets, combined with SAPT, on the accuracy were also established.