화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.124, No.3, 1880-1890, 2012
Alteration of the mechanical and thermal properties of nylon 6/nylon 6,6 blends by nanoclay
Nylon 6 [N(6)], nylon 6,6 [N(6,6)], and their blends at different clay loadings were prepared. The mix was melted and injected into strip-shaped samples. Mechanical and thermal analyses were performed to investigate the effect of blending and the incorporated clay on the mechanical and thermal properties. Enhancements in the Young's modulus and hardness were obtained for all of the nanocomposites, with a 55% increase in Young's modulus after the addition of 6 wt % nanoclay, although the improvement in tensile strength depended on the blend ratio, with greatest effects on the 50% N(6)/50% N(6,6) blend with increases of 44 and 59% for 2 and 4% clay loadings, respectively. Thermogravimetric analysis showed an enhancement in the thermal properties in the 50% N(6)/50% N(6,6) blend at 2% clay loading, and the blend exhibited ductile behavior at this loading. Increases in the crystallization peak temperatures of 1015 degrees in N(6,6) and the two blends 30% N(6)/70% N(6,6) and 50% N(6)/50% N(6,6) were observed after the addition of the clay. The nanoclay enhanced the -/beta-form crystals in N(6) and N(6,6) neat polymers and also in the blends. Fourier transform infrared spectroscopy FT-IR revealed the formation of hydrogen bonding and the possible formation of ionic bonds between the polymers and the nanoclay, which resulted in enhancements in the mechanical properties of the blends. The distribution of the nanoclay in the blend was well dispersed, as shown by X-ray diffraction analysis. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012