Applied Energy, Vol.87, No.1, 310-319, 2010
Multicriteria analysis to evaluate the energetic reuse of riparian vegetation
The management of riparian vegetation which includes cutting operations of grass, reeds, bushes and trees, is very important to reduce hydrogeologic risk. In Tuscany, riparian biomass and residues are mainly left shredded along courses or disposed in landfills as special wastes: actually different laws prohibit that tree trunks are abandoned in areas naturally affected by flooding, because they can be moved contributing to increase the water level and to maximize the hydraulic risk of some other nearby areas. In some cases, it is also possible to store the logs in specified sites from where they can be taken and used as a fuel in fireplaces or domestic heating plants. This work studies the possibility of the reuse of riparian vegetation as biomass for energy production and evaluates benefits and drawbacks from the economical, environmental and managerial points of Particularly, a specific methodology has been developed for two hydrological districts of Tuscany, view. with different typologies and densities of vegetation. First, an estimation of biomass distribution on the land and an evaluation of annual wood availability have been carried out; then, different chains concerning harvesting operation, biomass transport, storage conditions and final utilisation, have been defined and compared by a specific multicriteria analysis (MCA): finally, for the most suitable bio-energy chains the Life Cycle Assessment (LCA) has been implemented. Results of the LCA have also permitted to validate some environmental indicators used in the MCA, as mechanisation level of yards, energy efficiency of plants or transport distances. The decision making tool developed allows to compare costs and environmental benefits of the energy use of riparian vegetation, supporting local authorities involved in energy planning: in this way it is possible to confront different alternatives to match the energy demand and meet the energy saving and sustainability issues at the lowest cost for the community. In conclusion, the most interesting bio-energy chains, based on technology of direct combustion, are those that require a limited forestry mechanisation, the short transport distances and the medium sized plants. The LCA applied to these most suitable chains has also shown significant environmental benefits to promote the energetic use of riparian biomass instead of fossil fuels. (C) 2009 Elsevier Ltd. All rights reserved.
Keywords:Bio-energy;Riparian vegetation;Multicriteria analysis (MCA);Life Cycle Assessment (LCA);Sustainability of the biomass use